DEPARTMENT OF THE ARMY SUPPLY BULLETIN

Army Medical Department Supply Information

Headquarters, Department of the Army, Washington, DC 20310-2300 20 April 2014

Effective until rescinded or superseded

DISTRIBUTION STATEMENT A: Approval for public release; distribution is unlimited

Printing of this information does not constitute endorsement of the product, manufacturer, or the use of any related item thereof by the US Army.

REPORTING ERRORS AND RECOMMENDING IMPROVEMENTS

If you find any mistakes, or know a way to improve this publication, please let us know. Mail your letter or DA Form 2028 (Recommended Changes to Publications and Blank Forms) directly to the US Army Medical Materiel Agency, ATTN: MCMR-MMO-S, Fort Detrick, MD 21702-5001. If you prefer using email, please address it to usammacrm@amedd.army.mil.

Table of Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1</td>
<td>The Army Medical Department (AMEDD) Fielding Policy</td>
<td>1-1</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>Excess Medical Materiel and Equipment Management and the Lead</td>
<td>2-1</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Expandable Tactical Shelter (ISO) Repair</td>
<td>3-1</td>
</tr>
<tr>
<td>Chapter 4</td>
<td>Distribution Illumination Systems Electrical (DISE) and Power Distribution Illumination Systems Electrical (PDISE)</td>
<td>4-1</td>
</tr>
<tr>
<td>Chapter 5</td>
<td>Convention for Safe Containers (CSC)</td>
<td>5-1</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>Expandable Tactical Shelter Tiedown</td>
<td>6-1</td>
</tr>
<tr>
<td>Glossary</td>
<td></td>
<td>GL-1</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>IN-1</td>
</tr>
</tbody>
</table>

NOTICE

This Supply Bulletin supersedes in its entirety any previous issues specific to information on the subject of the contents of this Supply Bulletin. The contents are devoted specifically to the TOE Medical Units and Logistics’ Personnel.
CHAPTER 1. THE ARMY MEDICAL DEPARTMENT (AMEDD)
FIELDING POLICY

1-1. INTRODUCTION

a. In accordance with (IAW) Army Regulation (AR) 525-29, Army Force Generation (ARFORGEN), and in support of AR 700-142, Type Classification, Materiel Release, Fielding and Transfer, the U.S. Army Medical Materiel Agency (USAMMA) executes medical equipping for the U.S. Army Medical Research and Materiel Command (USAMRMC) and U.S. Army Medical Command (MEDCOM). They execute a variety of materiel release, fielding and transfer functions and are the lead Agency for Medical Equipment Reset, executing Reset missions for all Army units redeploying with medical equipment. The USAMMA, also, assists the U.S. Army Materiel Command with Responsible Reset (R2) and Lead Materiel Integrator (LMI) Decision Support Tool (DST) execution.

b. Specifically, the Force Sustainment Directorate, USAMMA, has principal responsibility in the domain of national-level Army medical force management. They are responsible for the wholesale procurement, production, fielding, sustainment, and recovery of medical Sets, Kits and Outfits (SKOs) and individual medical equipment items for the Army’s medical force, as well as nonmedical units with medical requirements (Active, Reserve, and National Guard Components [COMPOS]). This includes the full range of planning, programming, budgeting and execution (PPBE), procurement of SKO components and equipment, management of the SKO build process, distribution/fielding of medical assemblages, operational support of the Army medical units, and follow-on logistics support for medical systems and equipment to ensure combat ready forces in peacetime and during times of conflict. These actions are in direct support of USAMMA’s Core Competencies; Equip the Force and Sustain the Force, as well as Army Force Generation (ARFORGEN).

c. Units are prioritized for execution in accordance with AR 525-29, ARFORGEN, the Dynamic Army Resource Priority List (DARPL), Headquarters, Department of the Army (HQDA) G-8 and Office of the Surgeon General (OTSG) Operations/Logistics-approved Business Rules contained within the AMEDD Equipping Strategy (AMES). The Enterprise Requirements Planning (ERP) cell in the Force Integrations and Operations Directorate (FI&OD) at USAMMA uses the aforementioned business rules and generates the FL8D Operations and Maintenance, Army (OMA) fiscal year forecast(s) using FI&OD’s Medical Equipping Database. These forecasts are provided to the Force Sustainment Directorate for development of the overarching Executive Level Fielding Schedule (ELFS) where all requirements, regardless of funding source, are brought together for procurement, assembly, fielding and maintenance planning and capacity management.

1-2. APPLICABILITY

a. The AMEDD fielding guidance outlined in this Supply Bulletin chapter supersedes the AMEDD Fielding Policy memorandum dated 01 July 2001. This guidance applies to all medical field units and nonmedical units authorized medical SKOs, less those sets managed under Army Prepositioned Stocks (APS). The USAMMA centrally manages APS hospitals as long-term storage assets and fields their shortages under separate programs which are directed by the Force Projection Directorate.

b. This AMEDD fielding guidance is consistent with the guidance of the MEDCOM/OTSG AMES. Army Command (ACOM), Army Service Component Command (ASCC) or Direct Reporting Units (D RU) must coordinate deviations with HQDA G-8, MEDCOM/OTSG and USAMMA.

c. This Army Medical Department (AMEDD) fielding guidance identifies USAMMA’s initial fielding and follow-on direct-ship program responsibilities. The USAMMA will use the direct-ship program to fill shortages of nonexpendable, durable, and expendable materiel
identified and documented from an initial fielding shipment and for programmed fielding missions where onsite fielding teams are cost prohibitive.

1-3. GENERAL

a. The AMES prioritizes requirements in the funding expense and investment categories of OMA and Other Procurement, Army (OPA), respectively. Units have the responsibility to obtain sufficient OMA or expense funds to sustain and maintain their sets to the fielded unit assemblage listing (UAL) authorization as fielded by USAMMA IAW AR 40-61, Medical Logistics Policies and AR 220-1, Army Unit Status Reporting and Force Registration – Consolidated Policies. Based on the availability of funds, USAMMA will provide OPA or investment items where authorized. Any ACOM, ASCC or DRU policies that are not IAW these regulations and are not supported by the AMEDD POM become the responsibility of the ACOM, ASCC or DRU.

b. The USAMMA will provide a Materiel Fielding Team (MFT), where applicable, which may consist of all or some of the following team members:

(1) USAMMA fielding representative who is generally a Department of the Army civilian or Army noncommissioned officer

(2) Medical maintenance technician(s)

(3) Contractor medical logistics experts to field the required items

c. The USAMMA also has five Liaison Officers (LNOs) to assist with fieldings and direct shipments, as required. They are located at Army Field Support Battalions (AFSBn) (Fort Bragg, NC; Fort Campbell, KY; Fort Carson, CO; Fort Lewis, WA, and Fort Hood, TX).

d. In advance of a fielding, USAMMA will assign a fielding representative to the unit and ensure all applicable fielding documentation is provided. This includes a Memorandum of Notification (MON) and Logistics Support Agreement (LSA). A Letter of Instruction (LOI) which provides Disposition Instructions for any on-hand assets that will be excess upon completion of the fielding will only be provided for Reset units. All other units will receive their disposition instructions for on-hand excess through Lead Materiel Integrator (LMI) Decision Support Tool (DST) /their Command.

e. In some instances, it is more efficient for USAMMA to direct ship the required items to the unit. In this case, the unit will receive a Request for Information (RFI) to obtain proper shipping information. It is imperative this RFI be returned within 1 week (5 working days) to ensure items are shipped to the correct locations for unit receipt. They will, also, receive a MON to explain why they are receiving a direct shipment, and if they are a Reset unit, an LOI that provides disposition for items that will be excess after receipt of direct ship equipment or materiel. If the unit is not a Reset unit, they will receive disposition instructions from LMI DST/their Command.

f. During a fielding, the MFT will issue Service-regulated, Line Item Number (LIN) medical equipment with Acquisition Advice Code (AAC) “A,” “W,” “J” and some “L.” In addition, USAMMA will provide Service-regulated, non-LIN, and non-expendable AAC “W” or “J” and some AAC “L” medical equipment as components of authorized sets. If these items are not available during the initial fielding, USAMMA will provide them to the unit upon availability.

g. USAMMA’s goal is to field each set at 100 percent of fill; however, this is not always possible. Consequently, USAMMA commits to provide not less than 90 percent of
nonexpendable and durable item fill on each set that is fielded. All items, other than Service-regulated items, still short after one year, will be the responsibility of the unit.

h. Units must document shortages IAW AR 710-2, Supply Policy Below the National Level and AR 40-61. The USAMMA will attempt to provide the nonexpendable medical equipment shortages **90-180 days after the initial fielding**.

i. In accordance with AR 700-142, upon completion of either a fielding or direct ship, USAMMA will reconcile the fielded/issued item information and laterally transfer the on-hand information from their Property Book Unit Supply – Enhanced (PBUSE) account to the gaining unit’s PBUSE account. The lateral transfer is completed between USAMMA and the gaining unit IAW AR 710-2, Supply Policy Below the National Level and 735-5, Policies and Procedures for Property Accountability. Upon unit acceptance, the fielding is considered completed.

j. Once the above actions stated in paragraphs 1-3, d-i, are completed, USAMMA has fulfilled its obligations to the gaining unit.

k. The medical equipment set (MES) maintenance and UAL updates remain the unit’s responsibility IAW AR 40-61.

1-4. BRIGADE COMBAT TEAM (BCT) AND ECHELONS ABOVE BRIGADE COMBAT TEAM (EABCT)

 a. COMPO 1 (active Army) BCT-level medical units (Aid Station and Medical Companies) and EABCT medical units (Area Support Medical Company, Ground and Air Ambulance Companies, Forward Surgical Teams, etc.) authorized MES will be fielded all authorized materiel IAW the current UAL at the time of the fielding. The current policy also includes an initial issue of authorized Potency and Dated (P&D) materiel and Note “R” and “Q” items. COMPO 2 (Army National Guard) and 3 (Army Reserve) medical units will be fielded all UAL items less P&D materiel. It is the unit’s responsibility to sustain and maintain their sets once fielded by the USAMMA IAW AR 40-60, Policies and Procedures for the Acquisition of Medical Materiel (para 2-9N), AR 40-61, AR 220-1, and Department of the Army Pamphlet (DA Pam) 700-60, Department of the Army Sets, Kits, Outfits and Tools (Chapter 3). Any Command policies not IAW these regulations and not supported by the AMEDD POM become the responsibility of the Command.

 b. Please see above paragraph 1-3, d-i, for the remainder of USAMMA’s fielding responsibilities to the gaining unit(s).

1-5. COMBAT SUPPORT HOSPITALS (CSH)

 a. COMPO 1 CSHs authorized medical materiel sets (MMSs) will be fielded all authorized medical materiel less Note “R” and “Q” and P&D items. These items are covered under the USAMMA’s Centrally Managed P&D Materiel Program. See DA Supply Bulletin (SB) 8-75-S7, FPD Programs and Systems, for more details. It is the unit’s responsibility to sustain and maintain its sets, once fielded by USAMMA, IAW AR 40-61 and AR 220-1. Any Command policies that are not IAW these regulations and are not supported by the MEDCOM/OTSG AMES are the responsibility of the Command. Medical materiel and equipment shortages identified at the initial fielding will be provided in a direct-ship package.

 b. Although the USAMMA goal to field each set at 100 percent of fill is not always possible, USAMMA commits to provide not less than 90 percent of nonexpendable and durable item fill on each set that is fielded. All items, other than Service-regulated items, still short after one year, will be the responsibility of the unit.

1-3
c. Until the direct-ship packages are received, units must document the shortages IAW AR 710-2 and AR 40-61.

d. In accordance with AR 700-142, upon completion of either a fielding or direct ship, USAMMA will reconcile the fielded/issued item information and transfer the on-hand information from their PBUSE account to the gaining unit’s PBUSE account.

e. Once the items in 1-5, a-c, above are received by the gaining unit, the USAMMA has completed its obligations to the gaining unit.

f. Maintenance of the issued assemblages remains the unit’s responsibility IAW AR 40-61. The UAL of record corresponds to the sets fielded by USAMMA. For CSHs, the specific UAL for a unit is unique to each specific set, assemblage control number (ACN), build directive number (BDN) and relates to the database year fielded. To request a current UAL, refer to AR 40-61, Paragraph 10-4c, or visit USAMMA’s Internet at: www.usamma.amedd.army.mil. On the Home page, there is a Unit Assemblages tab to select where you may look up Medical Materiel Sets (MMS) by either UAL (i.e., M301, N301, P301) or by set LIN or National Item Identification Number (NIIN).

1-6. MODERNIZATION PROGRAM

The goal of the modernization program is to provide items based on Army and AMES priority, as well as the availability of funds. The current modernization methodology requires collaboration between the unit and USAMMA to determine the unit’s actual requirements based on the last fielded UAL as compared to the latest UAL. The USAMMA plans and schedules modernization events affecting units at least six months prior to execution. In general, the ACOM, ASCC or DRU approves the USAMMA modernization schedule and authorizes direct coordination between the USAMMA and the unit. Once a mutually acceptable date is in place, the unit will be fielded an equipment package that modernizes the unit to the latest database UAL. The Fielding Time Line process is shown in Table 1-1.

<table>
<thead>
<tr>
<th>Action</th>
<th>Timeline in Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determine Unit Requirements</td>
<td>D-2 year</td>
</tr>
<tr>
<td>Schedule Unit for Fielding</td>
<td>D-1 year</td>
</tr>
<tr>
<td>Validate Unit Requirements</td>
<td>D-240</td>
</tr>
<tr>
<td>Notify Unit of intent to Field</td>
<td>D-240</td>
</tr>
<tr>
<td>Coordinate Fielding Mission Support Requirements</td>
<td>D-180 days</td>
</tr>
<tr>
<td>USAMMA Build Modernization Package</td>
<td>D-180 days</td>
</tr>
<tr>
<td>Conduct the New Materiel Information Brief</td>
<td>D-90</td>
</tr>
<tr>
<td>USAMMA Ship Modernization Package</td>
<td>D-14</td>
</tr>
<tr>
<td>Execute Fielding Operations</td>
<td>D+14 days</td>
</tr>
<tr>
<td>USAMMA Follow-up</td>
<td>On going</td>
</tr>
</tbody>
</table>

1-7. NONMEDICAL ASSOCIATED SUPPORT ITEMS OF EQUIPMENT (ASIOE)

a. Currently, the USAMMA programs and funds several nonmedical ASIOE for sustainment. The replacement of these items is dependent on an assessment of the unit’s assets and USAMMA’s on-hand availability of the items. These items are not procured and are only available due to an extensive refurbishment program. Table 1-2 lists these items by LIN or National Stock Number (NSN):
Table 1-2. NON-MEDICAL ASIOE LINs

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>LIN or NSN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Conditioner/Heater (ECU)/FDECU</td>
<td>A26852</td>
</tr>
<tr>
<td>Container Cargo</td>
<td>C13825 (only 8115-01-241-7524)</td>
</tr>
<tr>
<td>Dolly Set, 7.5T M1022</td>
<td>D34883</td>
</tr>
<tr>
<td>Kitchen, Field, Modular</td>
<td>F39561</td>
</tr>
<tr>
<td>Heater, 120K BTU</td>
<td>H24907</td>
</tr>
<tr>
<td>Generator Set, 100KW PU495B/G</td>
<td>J35801</td>
</tr>
<tr>
<td>M-40 Electrical Distribution System</td>
<td>F55485</td>
</tr>
<tr>
<td>M-100 Electrical Feeder System</td>
<td>F55621</td>
</tr>
<tr>
<td>Panel Distribution Center, M-400</td>
<td>P60558</td>
</tr>
<tr>
<td>Utility Receptacles, M46</td>
<td>U89185</td>
</tr>
<tr>
<td>Fork Lift, 4000</td>
<td>T49255</td>
</tr>
<tr>
<td>Shelter, Tactical 3:1</td>
<td>S01359</td>
</tr>
<tr>
<td>Shelter, Tactical 2:1</td>
<td>S01291</td>
</tr>
<tr>
<td>Sanitation Center: Food</td>
<td>S33399</td>
</tr>
<tr>
<td>TEMPER Tent(s)</td>
<td>T71619, T47813, T47745, T71755</td>
</tr>
<tr>
<td>Passage Way ISO TEMPER</td>
<td>8340-01-260-7452</td>
</tr>
<tr>
<td>TEMPER Bump Thru Door</td>
<td>8340-01-263-2546</td>
</tr>
<tr>
<td>Passage Way ISO to ISO</td>
<td>8340-01-277-0620</td>
</tr>
<tr>
<td>Bump Thru ISO Door</td>
<td>6545-01-372-2623</td>
</tr>
<tr>
<td>TEMPER, Sanitation, 32’</td>
<td>8340-01-324-7971</td>
</tr>
<tr>
<td>TEMPER, Kitchen, 48’</td>
<td>8340-01-325-0131</td>
</tr>
<tr>
<td>Cable Assembly(Phase set)</td>
<td>6150-01-258-1202</td>
</tr>
<tr>
<td>Cable Assembly(100 Amp)</td>
<td>Various</td>
</tr>
<tr>
<td>Cable Assembly(60 Amp)</td>
<td>Various</td>
</tr>
</tbody>
</table>

b. Some individual Tent, Extendable, Modular, Personnel (TEMPER) tent system fabric sections/components that were produced on Defense Logistics Agency Contracts between the years of 1988 to 1996 have exceeded their useful service and shelf life expectancies. Many of these fabric components have been tested and have been found to no longer meet current MIL-PRF-SPEC requirements in the area of flame resistance, tear and break strength and hydrostatic resistance. Resulting from the testing conducted, it is identified that these components pose a medium risk to user’s safety. Army organizations must conduct an inventory assessment to determine whether they have systems/components that are affected as a result of this message. Organizations with affected systems/components must replace these items with conforming products.

c. Corrective procedures - Identify whether any old stock of TEMPER Tents exist within the unit. Identify contract numbers shown on labels stitched onto individual fabric components. If items in question are found, segregate these components and order replacement parts through the standard supply system prior to using the system.

d. Models affected - TEMPER Fabric components and National Stock Numbers (NSNs): Window Section, Tent (8340-01-186-3021); Door Section, Tent (8340-01-186-3020); End Section, Tent (8340-01-186-3014); Fly Tent 16 ft (8340-01-186-3018); Vestibule, Tent (8340-01-186-3026); Floor, Single Ply (8340-01-186-3024) and Floor, Vestibule, Single Ply
SB 8-75-S4

(8340-01-186-3027). The following Contract Numbers represent those individual component items delivered as part of a contract that have been used in the assembly a complete TEMPER tent systems: DLA 100-87-C-4233; DLA 100-87-C-4294; DLA 100-96-D-4007.

e. For additional information, please contact:

USAMMA
ATTN: MCMR-MMO-S
693 Neiman Street
Fort Detrick MD 21702-5001
Telephone: DSN 343-6940/9951/4396
Commercial: (301) 619-6940/9951/4396
CHAPTER 2. EXCESS MEDICAL MATERIEL AND EQUIPMENT MANAGEMENT AND THE LEAD MATERIEL INTEGRATOR (LMI)

2-1. THE LEAD MATERIEL INTEGRATOR (LMI) PROCESS

a. The Army is faced with the continuous challenge of getting the right equipment (materiel supply) to the right place at the right time (demand). To locate, prepare the equipment and get it to the units to meet requirements, the Secretary of the Army gave Army Materiel Command (AMC) the mission of being the Lead Materiel Integrator (LMI) – the manager of Army materiel redistribution. The Lead Materiel Integrator (LMI) synchronizes the distribution and redistribution of Army materiel to ensure units receive the right quantities of the right type of materiel in the proper condition at the right time and place in accordance with DoD and Army directives and priorities.

b. Army Sustainment Command (ASC) is the executing agent for LMI. ASC performs necessary functions associated with identifying materiel demands in Army units in accordance with their appropriate approved authorization documents (e.g. Modified Table of Organization and Equipment (MTOE), Table of Distribution and Allowances (TDA), Mission Essential Equipment List (MEEL), Equipment only TDAs (E-TDA), Operational Needs Statement (ONS) and supply fill levels designated by Army policy (e.g. ARFORGEN, Army Equipping Strategy policy for equipping the Generating Force). Provide UDPs for the distribution and redistribution of Army materiel, to equip unit demands Army wide, within limits of available supplies and leverage Army priorities to manage resources when supply falls short of demand.

c. Army authorized materiel resides under the control of the respective Army Commands (ACOM), Army Service Component Commands (ASCC), Direct Reporting Units (DRU), Army National Guard (ARNG) and United States Army Reserve (USAR) and they will make maximum use of the Army’s materiel to fill materiel shortages, fulfilling internal demand signals, based on approved authorization documents.

d. AMC, as well as a number of additional stakeholders, provide high-level documents that direct what equipment Soldiers need and in what priority. Knowing who has what equipment and knowing its readiness state is critical. Therefore, these stakeholders and documents drive the equipment demand.

e. The Secretary of the Army also directed that all of the supply data would come from one place: Logistics Support Activity (LOGSA) Information Warehouse (LIW). To help organize this supply and prepare it to source against the demand provided by the stakeholders, LOGSA created the LMI DST-SM tool (Lead Materiel Integrator Decision Support Tool- Sourcing Module).

f. DST-SM is the unclassified, web-based, collaborative tool the LMI uses to lead the Army Materiel stakeholders through the planning and execution of Army materiel distribution/redistribution. DST-SM matches validated, prioritized equipment demands with available Army inventory in depots, non-deployed units, and other sources. It can also provide different scenarios for solving tough equipping distribution problems. The options will help equipment managers consider the impact of delivery times and transportation costs and the long term effects of any decisions. All Army medical materiel redistribution requirements will be processed through the LMI DST-SM.

g. Several questions regarding excess medical materiel and equipment management have recently been submitted from Modification Table of Organization & Equipment (MTOE) units. Excess medical materiel and equipment are assets the unit no longer requires to perform its mission and/or exceeds the unit’s MTOE authorization.

h. Units going through Reset that will generate excess will be provided a Memorandum of Notification (MON) with a Letter of Instruction (LOI) for disposition of induction items and excess medical supplies. It will automatically be generated from the Force Sustainment Directorate of USAMMA. This memorandum will be sent to the unit approximately 90 days before the Materiel
Fielding Team will conduct the action. The document will give specific guidance on the induction process and the responsibilities of the unit. A Regional Manager assigned to the action will ensure receipt and understanding during the New Materiel Information Brief conducted approximately 90 days before the fielding.

i. Disposition for inactivating units, modernizations and conversions will be provided through the Logistics Materiel Integrator (LMI) Decision Support Tool (DST) and the owning Command.

2-2. ACCOUNTABILITY OF EXCESS MEDICAL MATERIEL AND EQUIPMENT

a. Units are required to maintain proper accountability of excess medical materiel and equipment until all disposition actions outlined within the disposition instructions are completed. Items should not be removed from the property book until all actions through DST and PBUSE have been completed. This is especially important when dealing with nonexpendable medical equipment.

b. Property Book Officers (PBOs/670As) are not authorized to remove medical equipment items from a unit’s property book until DST and PBUSE transactions are verified as completed.
3-1. EXPANDABLE TACTICAL SHELTERS

a. The purpose of the one or two-sided expandable tactical shelter is to provide a self-contained, transportable, multi-application utility shelter. The expandable tactical shelter is a member of the family of standard rigid wall International Organization for Standardization (ISO) shelters used by branches of the Department of Defense (DOD).

b. To keep the overall weight down, the shelters are constructed with aluminum/honeycomb sandwich panels (floor, side, end walls and roof). The floor sub-frame assembly, miscellaneous closeouts, other extrusions and corner posts are constructed from aluminum alloys with steel ISO fittings.

c. Due to the light-weight materials, the shelters are very susceptible to damage. Expandable tactical shelters become damaged due to improper setup/strike down, shipping damage, and general wear and tear.

d. Aluminum/honeycomb sandwich-panel skin surfaces that are punctured or damaged will allow water entry into panels. Care should be taken to prevent water from entering panel core material since it is very difficult to remove. When damage occurs, the punctured panel skin shall be temporarily covered immediately pending permanent repair. Duct tape or 100-mile per hour tape can be used to prevent entry of water until permanent repairs can be completed. If water has been allowed to enter panel, the core material shall be dried prior to skin repair.

3-2. MAINTENANCE ALLOCATION CHART

a. The Maintenance Allocation Chart (MAC) designates overall authority and responsibility for the performance of maintenance functions on the end item or component. The application of the maintenance functions to the end item or component shall be consistent with the capacities and capabilities of the designated maintenance levels which are shown on the MAC as:

 (1) Field: Unit maintenance and Direct Support (DS) maintenance
 C - Operator or crew maintenance
 O - Unit maintenance
 F - Direct Support maintenance

 (2) Sustainment:
 H - General Support (GS) maintenance
 D - Depot maintenance

b. Users shall refer to the MAC for task and levels of maintenance to be performed.

 (1) Where the density of equipment is not sufficient to authorize unit personnel with skills necessary to perform unit-level maintenance functions, AR 750-1, paragraph 3-9, d (8) states:

 "Evacuation to the appropriate maintenance support activity of unserviceable reparables beyond the MAC authorization or unit capacity to correct/repair."

 (2) For units authorized personnel with skills to perform greater than unit-level maintenance functions, AR 750-1, 6-15, c (2) states:

 "When operational conditions dictate, TACOM may authorize lower level maintenance activities to perform repairs beyond their authorized level of repair action."
3-3. REPAIR PROCEDURES FOR SMALL DENT(S) OR DEPRESSION(S)

a. Small dents or depressions are classified as any shelter-panel, skin-damaged area not exceeding 2 square inches or ¼-inch deep and no evidence of delimitation or skin puncher (Figure 3-1).

b. Small dent or depression repair procedures for shelter-panel skin.

(1) Remove all traces of paint from damaged area with sandpaper.

(2) Wipe sanded surface with clean cloth dampened in solvent and immediately wipe solvent from surface with a clean, dry cloth.

(3) Mask sanded surface with masking tape.

(4) Mix small quantity of adhesive in accordance with manufacturer’s instructions.

(5) Using spatula or putty knife, fill damaged area with adhesive.

(6) Apply heat using tripod-base heat lamp at 200°F for 40 to 60 minutes to fully cure adhesive. Alternate cures: 150°F for 4 hours or 75°F for 72 hours.

(7) Sand surface of cured adhesive to conform to surrounding area.

(8) Remove masking tape and clean repaired surface.

(9) Paint with appropriate paint following the proper procedures.

Figure 3-1. Small dent or depression repaired
3-4. **DRYING WATER-SOAKED AREAS IN PANELS**

a. Care shall be taken to prevent water from entering panel core material because it is very difficult to remove. When damage occurs, the punctured panel skin shall be temporarily protected to prevent entry of water until repair can be made. If water has been allowed to enter panel, the core material shall be dried prior to skin repair.

b. Drying panel procedures are as follows:

 (1) Position heat lamps around damaged area. Adjust lamps so that panel surface temperature does not exceed 200°F.

 (2) Allow heat lamps to remain in position until core material surrounding damaged area is thoroughly dry.

 (3) Drying time will vary and is determined by experience and amount of moisture in panel. Core material will feel hard and brittle when dry.

 (4) After core material is thoroughly dried, repair panel in accordance with the applicable repair task.

3-5. **BLIND RIVET REMOVAL AND INSTALLATION**

a. Remove blind rivets as follows (Wear safety goggles for eye protection.):

 (1) Select a drill bit the same diameter as installed blind rivet.

 (2) Install selected drill bit in hand drill chuck.

 (3) Hold drill perpendicular to the surface to prevent enlargement or damage to existing hole.

 (4) Drill through center of rivet just deep enough to sever rivet head from shank.

 (5) Remove remainder of rivet with a pin punch. Position pin punch on the fastener and drive out the fastener pin.

b. Install sealed (Figure 3-2), not domed head (Figure 3-3), pop rivets. If you use domed head rivets, you run the risk of letting water enter in by the open head of the rivet. Install rivets as follows (Wear safety goggles for eye protection.):

 (1) Select proper diameter and length of blind rivet.

 (2) Wet rivet with sealant and insert rivet in hole.

 (3) Holding hand blind riveter at right angle to work, install on blind rivet stem.

 (4) Push against work with just enough force to firmly seat rivet and prevent part separation.

 (5) Actuate hand blind riveter and pull rivet until stem breaks.

 (6) Firmly press on installed rivet to check tightness of installation.

 (7) Remove and replace in accordance with procedure if installation is unacceptable.

 (8) Apply silicone caulk around rivet head.
3-6. **REPAIR OF DEPRESSION OR SMALL PUNCTURE**

a. Skin depressions and small punctures are classified as a depression exceeding 2 square inches, or deeper than ¼-inch but not larger than 4 square inches or puncture not larger than 1 square inch (Figure 3-4).

b. Repair procedure for depression or small puncture in any shelter panel skin

 (1) Drill two ⅛-inch diameter holes within damaged area.

 (2) Dry panel, if required.

 (3) Mix small quantity of adhesive in accordance with manufacturer’s instructions.

 (4) Transfer adhesive to injector gun and inject adhesive through two drilled holes to fill core cells completely.

 (5) Apply heat using tripod base heat lamp at 200°F for 40 to 60 minutes to fully cure adhesive. Alternate cures: 150°F for 4 hours or 75°F for 72 hours.

 (6) Check by tapping damaged area to ensure complete filling of cells.

 (7) Sand damaged area with sandpaper to remove all traces of paint and excess adhesive.

 (8) Clean repaired surface (Figure 3-5).

 (9) Paint with appropriate paint following proper procedures.
3-7. **REPAIR OF PUNCTURE WITH MINIMAL DAMAGE TO CORE AND EXTENDED CRACKS**

a. Skin depressions and punctures with minimal core damage are classified as a depression exceeding 2 square inches or deeper than ¼-inch but not larger than 14-square inches (Figures 3-6, 3-7).

b. Repair procedure for depression or puncture in any shelter-panel skin with minimal core damage follows:

 1. (1) Dry panel, if required.

 2. (2) Use a portable electric router (or similar tool) that will cut an aluminum patch (Figure 3-8) 1 inch larger all around the damaged area.

 3. (3) Layout and drill holes same size as pop rivets (⅛-inch) in patch, ½-inch from edge and 1 inch between drill holes.

 4. (4) Stop-drill (drill a hole at the end) all cracks with a number 30 drill bit (Figure 3-8).
(5) Center patch over damaged area and mark patch outline on panel skin.

(6) Sand all paint from damaged panel skin within marked area, with sandpaper.

(7) Center patch over damaged area and drill same diameter holes in panel skin. Use holes in patch as a template.

(8) Index patch and panel skin with a mark to allow patch to be replaced in same orientation.

(9) Wipe damaged area and patch with a clean cloth dampened in solvent and immediately wipe solvent from surfaces with a clean, dry cloth. Do not allow solvent to get into exposed core.

(10) Mix sufficient amount of adhesive in accordance with manufacturer’s instructions.

(11) Pack adhesive in puncture and all exposed core cells. Use mixing sticks to pack adhesive and obtain a smooth surface.

(12) Apply a thick film of remaining adhesive to matting surface of patch.

(13) Place patch over prepared area in same orientation used in step 7.

(14) Align holes and using hand blind riveter install ⅛-inch diameter blind rivets (Figure 3-9).

(15) Clean repaired surface.

(16) Caulk around patch and rivet heads.

(17) Paint with appropriate paint following the proper procedures.
3-8. **REPAIR OF PUNCTURE WITH CORE FRACTURE DAMAGE**

a. Shelter sandwich panel punctured skin with core damage is classified as a depression exceeding 2 square inches and not exceeding 25 square inches (Figure 3-10).
b. Repair procedure for depression or puncture in any shelter panel skin with core damage follows:

1. Dry panel, if required.
2. Cut an opening through panel skin with a portable electric router or similar tool that will cut aluminum, one inch greater than damaged area. Avoid sharp corners in opening. Openings may be oval, circular, square, or rectangular with rounded corners.
3. Peel damaged portion of skin from core by lifting and rolling skin.
4. Remove all loose core from exposed core area with compressed air.
5. Cut aluminum patch 1 inch larger all around cutout opening.
6. Layout and drill holes same size as pop rivets (1/8-inch) in patch, ½-inch from edge, and 1 inch between drill holes.
7. Mix sufficient amount of adhesive in accordance with manufacturer’s instructions.
8. Pack adhesive in core cells to fill exposed area above surface of panel skin.
9. Apply heat using tripod base heat lamp at 200°F for 40 to 60 minutes to fully cure adhesive. Alternate cures: 150°F for 4 hours or 75°F for 72 hours.
10. Center patch over damaged area and mark patch outline on panel skin.
11. Using sandpaper, sand all paint from damaged panel skin within marked area.
12. Center patch over damaged area and drill same diameter holes in panel skin. Use holes in patch as a template.
13. Index patch and panel skin with a mark to allow patch to be replaced in same orientation.
14. Wipe damaged area and patch with a clean cloth dampened in solvent and immediately wipe solvent from surfaces with a clean, dry cloth. Do not allow solvent to get into exposed core.
15. Apply a thick film of remaining adhesive to matting surface of patch.
16. Place patch over prepared area in same orientation used in step 13.
17. Align holes and using hand blind riveter install ¼-inch diameter blind rivets (Figure 3-11)
18. Clean repaired surface.
19. Caulk around patch and rivet heads.
20. Paint with appropriate paint following the proper procedures.
3-9. REPAIR OF PUNCTURE THROUGH ONE SKIN AND CORE

a. Shelter sandwich panel punctured skin with major core damage is classified as a depression not exceeding 100 square inches.

b. The following procedure covers repair of panel puncture through one skin with core damage (damaged area does not exceed 100 square inches):

 (1) Dry panel, if required.

 (2) Cut an opening through panel skin with a portable electric router (or similar tool) that will cut aluminum 1 inch greater than damaged area. Avoid sharp corners in opening. Openings may be oval, circular, square, or rectangular with rounded corners.

 (3) Peel damaged portion of skin from core by lifting and rolling skin.

 (4) Trim core area with a knife to the same size as the opening while leaving a small amount of core material on opposite skin.

 (5) Cut aluminum patch 1½-inch larger all around than cutout opening (Figure 2-12).

 (6) Cut core material same size as cutout opening. Core plug should be flush with or slightly lower than panel skin surface.

 (7) Clean loose core material dust and chips from cutout opening.

 (8) Apply an even coat of adhesive to cutout core surfaces.

 (9) Insert core plug in cutout opening and press firmly in place.

 (10) Apply an even coat of adhesive around core plug and fill any gaps around the core material plug (Figure 3-13).

 (11) Apply heat using tripod base heat lamp, at 200°F for 40 to 60 minutes to fully cure adhesive. Alternate cures: 150°F for 4 hours or 75°F for 72 hours.
(12) Sand the cured adhesive with sandpaper to obtain a smooth contour with surface of panel skin.

(13) Center patch over damaged area and mark patch outline on panel skin.

(14) Sand all paint from damaged panel skin within marked area with sandpaper.

(15) Center patch over damaged area and drill same diameter holes in panel skin. Use holes in patch as a template.

(16) Index patch and panel skin with a mark to allow patch to be replaced in same orientation.

(17) Wipe damaged area and patch with a clean cloth dampened in solvent and immediately wipe solvent from surfaces with a clean, dry cloth. Do not allow solvent to get into exposed core.

(18) Apply a thick film of remaining adhesive to matting surface of patch.

(19) Place patch over prepared area in same orientation used in step 16.

(20) Align holes and, using hand blind riveter, install ⅛-inch diameter blind rivets.

(21) Clean repaired surface.

(22) Caulk around patch and rivet heads.

(23) Paint with appropriate paint following proper procedures.
3-10. SHELTER BODY SEAL REPLACEMENT

a. The Expandable Shelter has movable walls, floors and roofs; rubber seals are used where the movable components align. These seals wear out over time or become damaged during use.

b. The following procedure covers general replacement of the various rubber seals. For specific seals use the appropriate technical manuals.

 (1) Lay the new rubber seal out flat, being careful not to stretch it. Keep it this way until all bends and deformations are out.

 (2) If defective seal has a retaining strip, drill out blind rivets and remove retaining strip.

 (3) Remove defective seal and strip old sealant from bonding surface.

 (4) Wipe bonding surface with a clean cloth dampened with solvent and immediately wipe solvent from surface with a clean, dry cloth.

 (5) Clean seal with a lint-free cloth by dry wiping prior to bonding.

 (6) Brush sealant on matting surfaces of seal and bonding surface.

 (7) When sealant is tacky (approximately 5 minutes), place seal in position, press firmly to seat and ensure contact with matting surface.

 (8) If seal is the type that has a retaining strip, seal shall be bonded prior to riveting retaining strip.

 (9) After installing rivets, using hand blind riveter, cover rivets and seal with sealing compound (Figure 3-14).

Figure 3-14. Seal replacement examples
3-11. UNIT MAINTENANCE (ORGANIZATIONAL) REPARABLE DAMAGE EXAMPLES

Figures 3-15 through 3-20 are examples of reparable damage.

Figure 3-15. Broken door latch
Figure 3-16. Broken step with puncture
Figure 3-17. Torn off Step
Figure 3-18. Dents
Figure 3-19. Torn upper rubber seal
3-12. DIRECT SUPPORT MAINTENANCE REPARABLE DAMAGE EXAMPLES

Figures 3-21 through 3-26 are examples of direct support maintenance reparable damage. Some units have the ability to repair this on site.
Figure 3-22. Smashed bottom side rail between fork pockets

Figure 3-23. Sliced front lower support rail

Figure 3-24. Sliced floor frame above fork pocket front lower support rail
Figure 3-25. Puncture and bent bottom edge

Figure 3-26. Destroyed side wall
4-1. INTRODUCTION

a. Distribution Illumination Systems Electrical/Power Distribution Illumination Systems Electrical (DISE/PDISE) is a family of power distribution and illuminations equipment that transmits electrical power between power generation equipment and the end user (Figure 4-1). It is used to form a consolidated power network by adding components to meet specific organizational missions and requirements.

b. DISE/PDISE provides flexibility by consolidating power sources, flexibility to unit operations and can be quickly assembled/disassembled for rapid relocation.

c. DISE/PDISE equipment is designed to operate with generator sets (5 Kilowatt [kW] to 200 kW) and can be connected to commercial (local) power under field conditions. DISE/PDISE allows the power to be distributed and utilized using standard class “L” military connectors. This is the connector utilized by the International Organization for Standardization (ISO) containers and Tent Extendable Modular Personnel (TEMPER).

Figure 4-1. Typical DISE/PDISE layout
4-2. DIFFERENCE BETWEEN DISE/PDISE

The major difference between DISE and PDISE systems is the type of circuit breakers they utilize. The DISE models use "Thermal-magnetic" where the PDISE use "Hydraulic-magnetic" breakers. The inside covers have different designs because of the size of the breakers. The other noticeable difference is the use of ground-fault circuit interruption circuit breakers; the DISE utilizes them and the PDISE models do not.

4-3. COMMON FEATURES DISE/PDISE FEEDER & DISTRIBUTION CENTERS, POWER DISTRIBUTION PANEL

a. Each system is equipped with:

(1) A master circuit breaker rated at the maximum permissible load for that model

(2) Phase indicator lights which indicate the presence of input power to the main breaker

(3) Branch circuits individually protected with circuit breakers

b. Both the DISE and PDISE are connected to generator power using a 4-foot pigtail (class "L" connector on one end, bare cable/wires on the other) (Figure 4-2).

![Figure 4-2. DISE/PDISE Pigtail](image)

c. The Power Distribution Panel (PDP) is hard wired to the generator using phase cables between the generator terminal lugs and terminal blocks on the PDP (see Figure 4-3).

![Figure 4-3. PDP terminal blocks](image)
4-4. DISE/PDISE SYSTEMS USED WITH COMBAT SUPPORT HOSPITALS

a. The M-400-PDP, 100 kW, Model PEU-155/E, LIN P60558, NSN 6110-01-248-6671 (Figure 4-4).

 (1) The M-400 is a skid-mounted, self-contained, all-weather-power distribution system designed for battlefield environment.

 (2) Circuit breakers are as follows:

 (a) Two 400-Ampere-(amp)-per-phase, main input breaker, provides safety protection between PDP M-400 and generator power supply. The main circuit breakers enable the operator to select from two possible sources of input power when connected to separate power sources.

 (b) Four 100-amp-per-phase, output breakers, provide dedicated circuit protection for each output connector. These circuit breakers prevent output power to that associated connector from exceeding a current of 100-amps per phase. These breakers also enable the operator to turn power to individual circuits on and off, as required.

 (c) Ten 60-amp-per-phase, output breakers, same as 100-amp but limit power output to 60-amp.

 (3) The Interlock bar functions as a manual safety interlock by physically preventing both main circuit breakers from being closed simultaneously, preventing power from both circuit breakers being applied to the internal bus bars (wiring) at the same time. In addition, the interlock prevents input power from one set of load terminals from being applied to the remaining set of input terminals.

 (4) Phase Indicator Lights: Three lights will glow green when power is available at the output side on the main breaker. Each light is associated with a separate power phase (A, B, or C).

 (5) Solenoid Interlock (Figure 4-3), two located inside each terminal block access door panel. This is a safety device that prevents the access door panel from being opened when power is applied to the PDP M-400.

Figure 4-4. PDP M-400
b. The M-100-Electrical Feeder System, Model M-100 or M100 A/P, LIN F55621, NSN 6150-01-208-9754 or 6150-01-308-5671 (Figure 4-5).

Figure 4-5. M-100

(1) The M-100 is a skid-mounted, self-contained, all-weather electrical feeder system designed for battlefield environment.

(2) Circuit breakers are as follows:

(a) One 100-amp per phase, main input breaker, provides safety protection between M-50 and generator or power supply. The main circuit breaker enables the operator to turn power to individual circuits on and off, as required.

(b) Two 60-amp-per-phase output breakers provide dedicated circuit protection for each output connector. These circuit breakers prevent output power to the associated connector from exceeding a current of 60 amps per phase. These breakers also allow the operator to turn power to individual circuits on and off, as required.

(c) Two 40-amp-per-phase output breakers same as 60 amp but limit power output to 40 amps.

(d) Two 20-amp single-phase output breakers same as 60 amp but limit power output to 20 amps. On the M-100, these breakers are Ground Fault (GF), designed to interrupt the circuit when a current flow occurs to the ground wire. The M-100 A/P does not utilize GF breakers.

(3) Phase Indicator Lights: Three lights will glow green when power is supplied to the feeder center. Each light is associated with a separate power phase (A, B, or C).

(4) The 100-amp pass-through connection: This connection allows a separate 100-amp cable to be connected for output to other end users. This is a direct connection so it does not have a circuit breaker to stop the power flow; it's like connecting two cables together.
(5) Table 4-1 lists the specifics of the two cables shown in Figures 4-6 and 4-7.

Table 4-1. Components of End Item (COEI)

<table>
<thead>
<tr>
<th>NSN</th>
<th>Description</th>
<th>Qty</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>6150-01-256-6300</td>
<td>Cable Pigtail, 4ft, 200amp</td>
<td>1</td>
<td>4-6</td>
</tr>
<tr>
<td>6150-01-256-6304</td>
<td>Cable Service/Feeder, 100amp 50ft</td>
<td>2</td>
<td>4-7</td>
</tr>
<tr>
<td>6150-01-256-6299*</td>
<td>Strap, Cable Carrying (old style)</td>
<td>8</td>
<td>4-7</td>
</tr>
<tr>
<td>6150-01-596-0428*</td>
<td>Strap, Cable Carrying (new style)</td>
<td>4</td>
<td>4-7</td>
</tr>
</tbody>
</table>

*Authorized one or the other not to exceed total quantity.

c. The M-40 - Electrical Distribution System, Model M-40 or M40 A/P, LIN F55485, NSN 6150-01-208-9753 or 6150-01-307-9446 (Figure 4-8).
SB 8-75-S4

(1) The M-40 is a skid-mounted, self-contained, all-weather electrical distribution system designed for battlefield environment. It is mainly used with the M-46 Utility Assembly to provide power for lights and house-hold type receptacles.

(2) Circuit breakers are as follows:

(a) One, 40-amp per phase, main input breaker, provides safety protection between M-40 and generator or power supply. The main circuit breaker enables the operator to turn power to individual circuits on and off, as required. This breaker also controls the 40-amp output connection.

(b) Twelve, 20-amp single-phase, output breakers, provide dedicated circuit protection for each output connector. These circuit breakers prevent output power to that associated connector from exceeding a current of 20 amps. These breakers also enable the operator to turn power to individual circuits on and off, as required. On the M-40, six of these breakers are GF, designed to interrupt the circuit when a current flow occurs to the ground wire. The M-40 A/P does not utilize GF breakers.

(3) Phase Indicator Lights: Three lights will glow green when power is supplied to the distribution system. Each light is associated with a separate power phase (A, B, or C).

(4) Figures 4-9 through 4-13 and Table 4-2 describe the COEI for the M-40.

Table 4-2. COEI

<table>
<thead>
<tr>
<th>NSN</th>
<th>Description</th>
<th>Qty</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>6150-01-256-6301</td>
<td>Cable Pigtail, 4ft, 40/60amp</td>
<td>1</td>
<td>4-9</td>
</tr>
<tr>
<td>6150-01-247-4781*</td>
<td>Cable Service/Feeder, 40/60 amp 100 ft</td>
<td>1</td>
<td>4-10</td>
</tr>
<tr>
<td>6150-01-247-4779*</td>
<td>Cable Service/Feeder, 40/60 amp 50 ft</td>
<td>2</td>
<td>4-10</td>
</tr>
<tr>
<td>6150-01-256-6299</td>
<td>Strap, Cable Carrying</td>
<td>16</td>
<td>4-10</td>
</tr>
<tr>
<td>6150-01-251-9125</td>
<td>Box, Receptacle 120 V, 20 amp</td>
<td>1</td>
<td>4-11</td>
</tr>
<tr>
<td>6150-01-256-6298</td>
<td>Container, Transit & Storage</td>
<td>1</td>
<td>4-12</td>
</tr>
<tr>
<td>6150-01-250-3643</td>
<td>Cable, Extension, 50 ft, 20 amp</td>
<td>3</td>
<td>4-13</td>
</tr>
<tr>
<td>6150-01-250-0044</td>
<td>Cable, Extension, 25 ft, 20 amp</td>
<td>2</td>
<td>4-13</td>
</tr>
<tr>
<td>6150-01-253-4290†</td>
<td>Cable, Interface/Transition, Light Set, 25 outlet</td>
<td>2</td>
<td>4-13</td>
</tr>
<tr>
<td>6150-01-598-9748†</td>
<td>Cable, Assembly In-line Ground Fault Circuit Interrupter (GFCI)</td>
<td>1</td>
<td>4-25</td>
</tr>
<tr>
<td>5340-01-250-0045</td>
<td>Strap, Securing</td>
<td>6</td>
<td>4-19</td>
</tr>
</tbody>
</table>

*Older sets have two 50-ft cables; newer ones use one 100-ft cable.
† May or may not be issued with end item depending on initial issue date.
d. The M-46 - Electrical Utility Assembly, Model M-46, NSN 6150-01-208-9751, LIN U89185 (Figure 4-14).
(1) The M-46 electrical utility assembly is designed to connect to the DISE/PDISE outputs. The M-46 system consists of various electrical cables, lights for illumination and all weather electrical household type, 120-volt, duplex receptacles for plugging in electrical loads not to exceed the rating of the circuit breaker it is connected to (Figure 4-15). The M-46 is to be used with the DISE/PDISE feeder or a distribution system only; the M-46 does not have built-in fuse or circuit breaker protection.

(2) Table 4-3 and Figures 4-16 through 4-24 describe the COEI for the M46.

Table 4-3. COEI

<table>
<thead>
<tr>
<th>NSN</th>
<th>Description</th>
<th>Qty</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>8145-01-568-4834*</td>
<td>Container, Transit & Storage (box)</td>
<td>1</td>
<td>4-16</td>
</tr>
<tr>
<td>6150-01-256-6298*</td>
<td>Container, Transit & Storage (bag)</td>
<td>2</td>
<td>4-17</td>
</tr>
<tr>
<td>8145-01-569-3889¹</td>
<td>Container, Transit & Storage (utility light box)</td>
<td>1</td>
<td>4-16</td>
</tr>
<tr>
<td>6150-01-251-9124</td>
<td>Cable Assy, Branch Circuit, 20-amp 24 Ft</td>
<td>2</td>
<td>4-18</td>
</tr>
<tr>
<td>5340-01-250-0045</td>
<td>Strap, Cable securing</td>
<td>6</td>
<td>4-19</td>
</tr>
<tr>
<td>6150-01-251-9125</td>
<td>Box, Receptacle 120 V, 20 amp</td>
<td>6</td>
<td>4-20</td>
</tr>
<tr>
<td>6150-01-247-4766²</td>
<td>Cable, Extension, 20-amp 15 ft (old issue)</td>
<td>6</td>
<td>4-21</td>
</tr>
<tr>
<td>6150-01-250-0044²</td>
<td>Cable, Extension, 20-amp 25 ft (new issue)</td>
<td>6</td>
<td>4-21</td>
</tr>
<tr>
<td>6230-01-247-4784</td>
<td>Light, Utility 120 V, Dual socket,</td>
<td>2</td>
<td>4-22</td>
</tr>
<tr>
<td>6230-01-465-8931³</td>
<td>Light, Utility, Twin Fluorescent bulb</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>6150-01-256-6302</td>
<td>Rope Assembly, Support 53 ft</td>
<td>2</td>
<td>4-23</td>
</tr>
<tr>
<td>6150-01-264-2068</td>
<td>Kit, Light bulb</td>
<td>3</td>
<td>4-24</td>
</tr>
<tr>
<td>6240-00-194-7924</td>
<td>75W White Light Bulb (Rough Service)</td>
<td>3</td>
<td>4-24</td>
</tr>
<tr>
<td>6240-00-577-3425</td>
<td>40W Blue Light Bulb</td>
<td>3</td>
<td>4-24</td>
</tr>
<tr>
<td>6150-01-598-9748³</td>
<td>Cable, Assembly In-line GFCI</td>
<td>2</td>
<td>4-25</td>
</tr>
</tbody>
</table>

* Some sets have two storage bags; others use one large plastic box.
1 Only received if fluorescent utility lights issued.
2 Authorized one or the other not to exceed total quantity.
3 May or may not be issued with end item depending on initial issue date.
Figure 4-16. Transit & storage container

Figure 4-17. Transit & storage container

Figure 4-18. Cable Assembly Branch Circuit, 24 ft

Figure 4-19. Cable Strap

Figure 4-20. Receptacle Box

Figure 4-21. Extension Cable, 15 ft
4-5. CABLE ASSEMBLIES

a. Your choice of DISE/PDISE cables should be based on the distance between the locations selected for the generator set, the distribution centers (M-400, M-100, M-40) and end users (shelters, TEMPER, tents). The total cable lengths between the generator set (power source) and the end user equipment cannot exceed 300 feet. The greater the distance between the generator set (the power source) and the end user, the greater the decrease is in voltage. If the user equipment is sensitive to voltage loss, (i.e., the X-Ray), you may have to use shorter cables.

b. Cable routing is very important to troop and equipment safety. Cables should be routed to avoid vehicle roadway and troop walkways. If a cable must cross a roadway or walking traffic path, bury the cable or use industrial grade cable protectors (Figure 4-27). Do not lay cable connectors in depressions where water can collect.
c. Phase-Cable Assembly, NSN 6150-01-258-1202. Phase cables are used to connect (hard wire) the generator terminal lugs to the M-400 PDP terminal blocks. The assembly consists of four phase cables; 350-amp 600 Volts per cable, 100 feet in length, and one System Ground, 350-amp cable, 100 feet in length.

d. 100-Amp Service Feeder Cable, NSN 6150-01-256-6304 (COEI M-100), if ordered/issued separately NSN 6150-01-220-5587. One hundred (100)-amp cables are used to connect M-400 PDP to the M-100 and some end users (shelters). They can also be used between the power source (generator) and M-100 or end user if a 100-amp pigtail is used at the power source (generator). These cables are 3-phase, 50 ft in length, with a 3-inch diameter class "L" connector on both ends.

e. 60-Amp Service Cables. 40/60 amp cables are used to connect M-400 PPD and/or M-100 to the M-40 and end users. They can also be used between the power source and M-40 or end user if a 60-amp pigtail is used at the power source (generator). These cables are three phase, with a 2½-inch diameter class "L" connector on both ends.

(1) 50-ft length, NSN 6150-01-247-4779 (COEI M-40)
(2) 100-ft length, NSN 6150-01-247-4781 (COEI M-40)
(3) 100-ft length, NSN 6150-01-220-5588 (ordered/issued separately)

f. Pigtails are 4 feet in length, with appropriate size class "L" connector on one end and bare cable/wires on the other. They are used to adapt generators and local power sources to military DISE/PDISE type connections. The NSN 6150-01-256-6300 is for the 100/200-amp pigtail, NSN 6150-01-256-6301 for the 40/60-amp pigtail.

4-6. DISE/PDISE INVENTORIES

a. When inventories of the power equipment are conducted, you need to take into account the cables that are issued and the cables that are COEI. **Cables with the identical NSN can be both COEI as well as issued.**
b. Using the information provided within this chapter and in Table 4-4, you will be able to do a complete and accurate inventory of all your power equipment.

<table>
<thead>
<tr>
<th>NSN</th>
<th>Nomenclature</th>
<th>M400</th>
<th>M100</th>
<th>M40</th>
</tr>
</thead>
<tbody>
<tr>
<td>6150-01-258-1202</td>
<td>Cable Assy, phase (100 ft)</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>6150-01-256-6304</td>
<td>Cable Assy, 100-amp (50 ft)</td>
<td>0</td>
<td>Sub</td>
<td>2</td>
</tr>
<tr>
<td>6150-01-220-5587</td>
<td>Cable Assy, 100-amp (50 ft)</td>
<td>0</td>
<td>4</td>
<td>Sub</td>
</tr>
<tr>
<td>6150-01-247-4781</td>
<td>Cable Assy, 40/60-amp (100)</td>
<td>0</td>
<td>Sub</td>
<td>0</td>
</tr>
<tr>
<td>6150-01-220-5588</td>
<td>Cable Assy, 40/60-amp (100)</td>
<td>0</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>6150-01-247-4779</td>
<td>Cable Assy, 40/60-amp (50 ft)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*Either/or, not both (100-ft total of cable).

NOTE for Table 4-4:

1. Phase cables were initially issued based on one (1) set per M-400 PDP.
2. 100-amp cables were initially issued based on four (4) per M-400 PDP.
3. 60-amp cables were initially issued based on ten (10) per M-400 PDP.

4-7. DISE/PDISE AUXILIARY EQUIPMENT

The user requirements will vary according to the field situation; extra DISE/PDISE components may be required. The Technical Manual (TM) 9-6150-226-13 provides the authorization to requisition these items on an "as required" basis; Work Package 2, Section "Auxiliary Equipment", lists optional items that may be used to tailor the DISE/PDISE systems to your field situation and requirements.

4-8. AUTODISE

a. AutoDISE is the current U.S. Army computer based electrical camp planning tool. An intuitive graphics interface computer model developed to simulate the use of DISE/PDISE in the field environment. DISE refers to the military family of power distribution equipment (military customized electrical breaker boxes). AutoDISE was designed for and used by the U.S. Army. AutoDISE is a standalone client application requiring no formal installation and may be run directly off of a CD. AutoDISE can now be installed and has been given a DOD Certificate of Networthiness which authorizes the installation and use of AutoDISE in all DOD computer systems. Figure 4-28 has website and POC information.

b. AutoDISE is used to engineer DISE layouts for systems that consist of several shelters, electrical consumers and electrical power generators. DISE consists of electrical cables, connectors, feeder centers and distribution centers that are used to distribute electricity.

Information and downloads are available on the internet at http://www.autodise.net/. For a **Download Key**, contact the Government POC at the US Army Communications Electronics Command (CECOM), Power Generation Branch, 703-704-2148. Contact the AMEDD POC at Directorate of Combat and Doctrine Development (DCDD), Medical Maintenance Branch, 210-295-0537.

Figure 4-28. AutoDISE contact information
c. Current system capabilities include camp layouts to scale, required equipment inventory lists, phase balancing, automatic connection of power distribution and power consuming items, individual tent and shelter layouts, system analysis to include total kW, total loads, and available kW, user defined power distribution systems and user defined loads. A sample diagram is provided (Figure 4-29).

Figure 4-29. AutoDISE System Capabilities/Sample Diagram
5-1. INTRODUCTION

This chapter provides an overview of the Convention for Safe Containers (CSC) inspection requirements, why the program was developed, and how the program affects U.S. Army medical organizations that own and use Military-Owned Demountable Containers (MILVAN) and expandable shelters in their operations.

5-2. SAFETY INSPECTION REQUIREMENTS

a. The International CSC ensures safe movement of International Organization for Standardization (ISO) containers and shelters through international maritime channels. United States Public Law (US PL) 95-208 implemented the CSC requirements for both commercial and the DOD-owned containers.

b. In April 1997, the Deputy Under Secretary of Defense for Logistics took these requirements a step further by signing DOD 4500.9-R-1 which has been replaced by Defense Transportation Regulation (DTR) 4500.9-R-PART VI (September 2009 with changes through 1 August 2013), Management and Control of DOD Intermodal Containers. This regulation is mandatory for all U.S. Government agencies. Such equipment may not be moved in or loaded for movement by ocean or air in the Defense Transportation System (DTS) or commercial transportation system until standards are met. Detention orders will also be issued for unapproved containers and/or containers presenting an obvious risk to safety.

c. ISO containers with expired reinspection dates cannot be placed aboard ship before reinspection and recertification. However, empty containers may be moved to another location for reinspection or repairs. After ISO containers have been reinspected, affix DD Form 2282 on the safety approval plate, showing month and year item must be reinspected.

d. The readiness state of your unit is partially based on the ability for rapid deployment. This is compromised when medical units do not have containers certified for shipment through the DTS. An expired certification means a nondeployable container. Medical container Line Identification Numbers (LINs) are shown in Table 5-1.

<table>
<thead>
<tr>
<th>LIN</th>
<th>Type Container</th>
</tr>
</thead>
<tbody>
<tr>
<td>C13825</td>
<td>Container, Cargo Reusable</td>
</tr>
<tr>
<td>C84541</td>
<td>Container, Assembly Refrigerated</td>
</tr>
<tr>
<td>S01291</td>
<td>Shelter, 2:1</td>
</tr>
<tr>
<td>S01359</td>
<td>Shelter, 3:1</td>
</tr>
</tbody>
</table>

5-3. COMPLIANCE REQUIREMENTS FOR THE INTERNATIONAL SAFETY STANDARDS TO CERTIFY CONTAINER

a. In order to comply with this requirement, containers must be inspected in accordance with the international safety standards 5 years from the date of manufacture, every 30 months thereafter and when repaired after major damage.

b. DTR 4500.9-R-PART VI (September 2009 with changes through 1 August 2013) and Military Handbook (MIL-HDBK)-138B (1 January 2002) are the governing documents. After a successful inspection, the container is certified and certification annotated directly on the container itself in a manner that can be readily noted by an inspector. Failure to comply with the above requirements can result in penalties of $5000 each day for each container that
remains in service (46 United States Code (USC) Chapter 34 - Safe Containers for International Cargo, Sec. 1505 Penalties).

c. Units may have personnel trained as inspectors or request inspection assistance from your local Directorate of Logistics (DOL) or Regional Training Site Medical (RTS-MED).

d. The Defense Ammunition Center provides training courses for Intermodal Dry Cargo Container/CSC Reinspection titled AMMO-43. The course is offered free for military and DOD personnel; government contractors are charged a fee. To take the CSC certifying training online, follow the directions below:

(1) Web Site: http://www.dactces.org/

(2) Left hand side: Click Online Training

(3) Scroll down to:

(4) AMMO-43-DL//INTERMODAL DRY CARGO CONT/CSC REINSPECTION-DL

(5) Click on the class title and you will be redirected to the Army Training Requirements and Resources System (ATRRS)

(6) Click on Class # and follow instructions

(7) An email will be sent to your user supplied address with final registration instructions.

e. Points of contact:

(1) US Army Defense Ammunition Center (DAC)
ATTN: SJMAC-ASE
1C Tree Road, BLDG 2
McAlester OK 74501-9053

(2) DAC Academic Services Officer
Phone: DSN 956-8813/8920, commercial (918) 420-8813/8920
5-4. TRANSMITTAL REQUEST FOR NEW DEPARTMENT OF DEFENSE DOD FORM (DD Form) 2282

EXAMPLE

TELEFAX/E-MAIL TRANSMITTAL FORM WITH COVER SHEET:

ATTN: Xxxxxx
Date of request:
Total Number of Pages to Include Cover Sheet: 2
Classification: Unclassified

For Email Request: ATTN: DD Form 2282
To: xxxxxx
E-Mail: xxxxxxx

For Mail-in Request: ATTN: DD Form 2282
Director, SDDC G9 GCM/AIDPMO
ATTN: AMSSD-OPG-A
1 Soldier Way
Scott AFB, IL 62225-5006
Tel: Commercial: (618) 220-4485/DSN: 770-4485
FAX: (618) 220-6445/DSN: 770-6445

I have completed the AMMO-43 Intermodal Dry Cargo Container CSC Re-inspection Course conducted by the US Army Defense Ammunition Center and I am requesting certification decals for the year 2014 in a quantity of 25 each (DD Form 2282).

I have a total requirement for 24 Medical Expandable Tactical ISO shelters and associated ISO DEPMEDS MILVANs that are located at our field site. This equipment requires the 30-month re-inspection decals to retain our deployability. I appreciate your assistance in providing me with 25 decals that will complete the overdue reinspection on the Medical ISO shelters and MILVANs.

Thank you in advance for your assistance in this matter.

Insert your Unit’s Name
Insert Unit address/office symbol, room, etc.
Insert Bldg number and/or Street
ATTN: Insert Your Unit Name/Number
Insert City, State, and Zip code
Phone: DSN xxx-xxxx
Comm: (xxx) xxx-xxxx

5-5. CONTAINER MANAGEMENT AND INVENTORY GUIDANCE

a. Official inventories of all DOD intermodal ISO containers, regardless of ownership, ensures authorizations are correct, accountability is maintained and the DOD ISO container register is current and accurate. Maintaining an up-to-date ISO container register improves management, provides a safe DOD container system and a base from which to project future DOD requirements.

b. Official inventories normally will be conducted on a biennial basis during the first and second quarter of even calendar years but may be conducted at other times, as necessary, such as, during contingencies when required by the Theater Commander. Official inventories to update the DOD ISO Register will be initiated by U.S. Transportation Command (USTRANSCOM) and managed by Surface Deployment and Distribution Command (formerly Military Traffic Management Command) (SDDC). SDDC will promulgate inventory procedures for updating the web-based Army Container Asset Management System (ACAMS). At completion of inventory, SDDC will provide a report of inventory to USTRANSCOM.

c. In 2006, Army Regulation (AR) 56-4, Distribution of Materiel and Distribution Platform Management, designated ACAMS as the Army’s System of Record to support life-cycle management of ISO containers. Before 2006, there was no standard for controlling container purchases, leasing, movement records or maintenance records. The Army Intermodal and Distribution Platform Management Office (AIDPMO) serves as the Army point of contact (POC) for container management and is the proponent for the ACAMS computer program.

d. ACAMS can be accessed at https://eta.sddc.army.mil/ETASSOPortal/Default.aspx. ACAMS is the on-line DOD system-of-record for ISO container inventory management including:

(1) ISO Container Number Issuance
(2) Asset Registration
(3) Container Ownership Management
(4) Container Number Remarking

e. Supply Chain Manager (SCM), Service Representatives and/or DOD agencies should have an appointed Container Control Officer (CCO). CCOs utilize their ACAMS account to manage and update container records, along with responding to inventory data requests from SDDC. The two separate parts of the biennial inventory verification are ownership and on-hand.

(1) Ownership refers to containers registered to an activity by Department of Defense Activity Address Code (DODAAC).

(2) On-hand refers to all containers reported physically on-hand at a specific location by DODAAC.

f. CCOs, either directly or through SDDC, must update their container ownership, movements and physical inventory in ACAMS.

g. Container managers and owners may produce inventory reports for their own use at any time by using the ACAMS ad hoc report generator.

h. Containerized Ammunition Distribution System (CADS) containers that cannot be located during an official inventory will require initiation of a property adjustment document IAW AR 735-5, Policies and Procedures for Property Accountability.
CHAPTER 6. EXPANDABLE TACTICAL SHELTER TIEDOWN

6-1. TACTICAL SHELTER DAMAGE THAT IS CAUSED BY IMPROPER TIEDOWN

a. Many times during transport, tactical shelters are damaged due to improper tiedown methods being used. The upper rubber seal and seal cap are damaged, bent and or torn by improper tiedown of the expandable tactical shelters.

b. The Combat Support Hospital personnel are reporting that their tactical expandable shelters have tears in the upper roof seals and bent caps that hold these seals in place (Figures 6-1 through 6-4). They are also reporting these same shelters are leaking, and they ask, “What is causing these tears and making the roofs leak?” and “Can we prevent whatever is causing these problems?”

c. The USAMMA personnel have noted a situation that can best be described as critical, problematic and a result of a striking set of circumstances. The USAMMA is now convinced some leaks and tears are the direct result of incorrect tiedown of the shelter during transportation. Transporters are using straps or chains pulled from side-to-side directly across the top of the shelter to restrain the shelter to the flatbed trailer of the railcar. The shelter roof panel, side panels and caps are not designed or constructed to handle the force and stress caused by the tiedowns placed across the roof. Correcting this tiedown procedure should solve the problem with torn seals and leaking roofs.

d. The manufacturer of the shelter recognized the shelter should never be restrained in the manner described above. The design of the shelter provides hard points and a beefed-up support post at each corner. Procedures were developed for restraint of the shelter during transport by either flatbed trailer or railcar and published in Technical Manual (TM) 10-5411-200-14, Tactical, Expandable, Two-Sided (NSN 5411-01-136-9838) (60 AMP Model); (5411-01-294-9866) (100 AMP Model) and TM 10-5411-201-14, Shelter, Tactical, Expandable, One-sided (NSN 5411-01-124-1377) (60 AMP Model); (5411-01-295-3433) (100 Model).
6-2. PROPER TIEDOWN PROCEDURES

a. To restrain and secure a shelter to a flatbed trailer or railcar, two methods were
devised (Figures 6-5, 6-6 and 6-7). If cargo straps must be used (2 shelters aligned
together), the straps must only cross over at the corner posts. When the straps are ratcheted
tight, the pressure is transferred through the corner post to the trailer, thus, not crushing the
sidewall, roof panel or seal cap (Figure 6-8).

1. Using four 14-foot chains and four
binders, secure the shelter to the trailer of flatbed,
as shown in method 1.

2. Using two 20-foot chains and two
binders or four 6-foot chains and two binders,
secure the shelter to a trailer or flatbed, as shown
in method 2.

b. Unit members and shipping personnel must become very familiar with the restraint
procedures described here and in the TM. Personnel must oversee the loading and restraining
of shelters being shipped to guarantee the correct restraint procedures are followed. Truck
drivers are responsible for securing their loads but most are not accustomed to the differences
involved with the expandable tactical shelter. If these procedures are followed, the upper
caps and rubber seals will sustain less damage during movement.
GLOSSARY
Glossary for SB 8-75-S4

A

- **AAC** - Acquisition Advice Code
- **ACAMS** - Army Container Asset Management System
- **ACN** - Assemblage Control Number
- **ACOM** - Army Command
- **AFSBn** - Army Field Support Battalion
- **AIDPMO** - Army Intermodal and Distribution Platform Management Office
- **AKO** - Army Knowledge Online
- **AMC** - United States Army Materiel Command
- **AMEDD** - Army Medical Department
- **AMES** - AMEDD Equipping Strategy
- **AMP** - Ampere
- **APS** - Army Prepositioned Stock
- **AR** - Army Regulation or Army Reserve
- **ARC** - Accounting Requirements Code
- **ARFORGEN** - Army Force Generation
- **ARMT** - Army Rest Management Tool
- **ASC** - Army Sustainment Command
- **ASCC** - Army Service Component Command
- **ASIOE** - Associated Support Items of Equipment
- **ATRRS** - Army Training Requirements and Resources System

B

- **BCN** - Build Directive Number
- **BCT** - Brigade Combat Team

C

- **CADS** - Containerized Ammunition Distribution System
- **CC** - Condition Code
- **CCO** - Container Control Officer
- **CECOM** - Communications Electronics Command
- **COEI** - Component of End Item
- **COMPO** - Component of
- **COMPO1** - Component, Active Army
- **COMPO2** - Component, Army National Guard
- **COMPO3** - Component, Army Reserve
- **CRM** - Customer Relations Management
- **CSC** - Convention for Safe Containers
- **CSH** - Combat Support Hospital
<table>
<thead>
<tr>
<th>Abbreviation/Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DA</td>
<td>Department of the Army</td>
</tr>
<tr>
<td>DA PAM</td>
<td>Department of the Army Pamphlet</td>
</tr>
<tr>
<td>DAC</td>
<td>Defense Ammunition Center</td>
</tr>
<tr>
<td>DARPL</td>
<td>Dynamic Resource Priority List</td>
</tr>
<tr>
<td>DCDD</td>
<td>Directorate of Combat and Doctrine Development</td>
</tr>
<tr>
<td>DD FORM</td>
<td>Department of Defense (forms only)</td>
</tr>
<tr>
<td>DEPMEDS</td>
<td>Deployable Medical Systems</td>
</tr>
<tr>
<td>DISE</td>
<td>Distribution Illumination Systems Electrical</td>
</tr>
<tr>
<td>DLA</td>
<td>Defense Logistics Agency</td>
</tr>
<tr>
<td>DLA-DS</td>
<td>Defense Logistics Agency Disposition Services</td>
</tr>
<tr>
<td>DLIS</td>
<td>Defense Logistics Information System</td>
</tr>
<tr>
<td>DOD</td>
<td>Department of Defense</td>
</tr>
<tr>
<td>DODAAC</td>
<td>DOD Activity Address Code</td>
</tr>
<tr>
<td>DOL</td>
<td>Directorate of Logistics</td>
</tr>
<tr>
<td>DRU</td>
<td>Direct Reporting Units</td>
</tr>
<tr>
<td>DS</td>
<td>Direct Support</td>
</tr>
<tr>
<td>DSN</td>
<td>Defense Switched Network</td>
</tr>
<tr>
<td>DTR</td>
<td>Defense Transportation Regulation</td>
</tr>
<tr>
<td>DTS</td>
<td>Defense Transportation System</td>
</tr>
<tr>
<td>EAB</td>
<td>Echelons Above Brigade</td>
</tr>
<tr>
<td>EABCT</td>
<td>Echelons Above Brigade Combat Team</td>
</tr>
<tr>
<td>ELFS</td>
<td>Executive Level Fielding Schedule</td>
</tr>
<tr>
<td>EOC</td>
<td>Emergency Operations Center</td>
</tr>
<tr>
<td>ERP</td>
<td>Enterprise Requirements Planning</td>
</tr>
<tr>
<td>F</td>
<td>Force Integrations and Operations Directorate</td>
</tr>
<tr>
<td>FLIPL</td>
<td>Financial Liability Investigation of Property Loss</td>
</tr>
<tr>
<td>ERP</td>
<td>Enterprise Requirements Planning</td>
</tr>
<tr>
<td>FSC</td>
<td>Federal Supply Class</td>
</tr>
<tr>
<td>G</td>
<td>Ground Fault</td>
</tr>
<tr>
<td>GS</td>
<td>General Support</td>
</tr>
<tr>
<td>H</td>
<td>Headquarters, Department of the Army</td>
</tr>
<tr>
<td>I</td>
<td>In Accordance With</td>
</tr>
<tr>
<td>IMSA</td>
<td>Installation Medical Supply Activity</td>
</tr>
<tr>
<td>ISO</td>
<td>International Standardization Organization and International Organization for Standardization</td>
</tr>
</tbody>
</table>

GL-4
<table>
<thead>
<tr>
<th>Abbreviation/Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>kW</td>
<td>Kilowatt</td>
</tr>
<tr>
<td>LIN</td>
<td>Line Item Number</td>
</tr>
<tr>
<td>LMI</td>
<td>Lead Materiel Integrator</td>
</tr>
<tr>
<td>LNO</td>
<td>Liaison Officer</td>
</tr>
<tr>
<td>LOGSA</td>
<td>Logistics Support Agency</td>
</tr>
<tr>
<td>LOI</td>
<td>Letter of Instruction</td>
</tr>
<tr>
<td>LSA</td>
<td>Logistic Support Agreement</td>
</tr>
<tr>
<td>LSE</td>
<td>Logistics Support Element</td>
</tr>
<tr>
<td>MAC</td>
<td>Maintenance Allocation Chart</td>
</tr>
<tr>
<td>MEDCOM</td>
<td>United States Army Medical Command</td>
</tr>
<tr>
<td>MEDLOG</td>
<td>Medical Logistics System</td>
</tr>
<tr>
<td>MER</td>
<td>Medical Equipment Repair</td>
</tr>
<tr>
<td>MERT</td>
<td>Medical Equipment Retrograde Team</td>
</tr>
<tr>
<td>MES</td>
<td>Medical Equipment Sets</td>
</tr>
<tr>
<td>MFT</td>
<td>Materiel Fielding Team</td>
</tr>
<tr>
<td>MIL-HDBK</td>
<td>Military Hand Book</td>
</tr>
<tr>
<td>MILVAN</td>
<td>Military-Owned Demountable Container</td>
</tr>
<tr>
<td>MMS</td>
<td>Medical Materiel Sets</td>
</tr>
<tr>
<td>MON</td>
<td>Memorandum of Notification</td>
</tr>
<tr>
<td>MOS</td>
<td>Military Occupational Specialty</td>
</tr>
<tr>
<td>MPH</td>
<td>Mile per Hour</td>
</tr>
<tr>
<td>MTOE</td>
<td>Modification Table of Organization & Equipment</td>
</tr>
<tr>
<td>NCO</td>
<td>Noncommissioned Officer</td>
</tr>
<tr>
<td>NIIN</td>
<td>National Item Identification Number</td>
</tr>
<tr>
<td>NLT</td>
<td>Not Later Than</td>
</tr>
<tr>
<td>NSN</td>
<td>National Stock Number</td>
</tr>
<tr>
<td>OIC</td>
<td>Officer in Charge</td>
</tr>
<tr>
<td>OMA</td>
<td>Operations and Maintenance, Army</td>
</tr>
<tr>
<td>OPA</td>
<td>Other Procurement, Army</td>
</tr>
<tr>
<td>OTSG</td>
<td>Office of the Surgeon General</td>
</tr>
<tr>
<td>Abbreviation/Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------</td>
</tr>
<tr>
<td>P&D</td>
<td>Potency and Dated</td>
</tr>
<tr>
<td>PBO</td>
<td>Property Book Officer</td>
</tr>
<tr>
<td>PBUSE</td>
<td>Property Book Unit Supply Enhanced</td>
</tr>
<tr>
<td>PDISE</td>
<td>Power Distribution Illumination Systems Electrical</td>
</tr>
<tr>
<td>PDP</td>
<td>Power Distribution Panel</td>
</tr>
<tr>
<td>PMCS</td>
<td>Preventive Maintenance Checks and Services</td>
</tr>
<tr>
<td>POC</td>
<td>Point of Contact</td>
</tr>
<tr>
<td>POC</td>
<td>Program Objective Memorandum</td>
</tr>
<tr>
<td>R2</td>
<td>Responsible Reset</td>
</tr>
<tr>
<td>R2TF</td>
<td>Responsible Reset Task Force</td>
</tr>
<tr>
<td>RFI</td>
<td>Request for Information</td>
</tr>
<tr>
<td>RMC</td>
<td>Regional Medical Command</td>
</tr>
<tr>
<td>RTS-MED</td>
<td>Regional Training Site-Medical</td>
</tr>
<tr>
<td>S</td>
<td>Supply Bulletin</td>
</tr>
<tr>
<td>SCM</td>
<td>Supply Chain Manager</td>
</tr>
<tr>
<td>SDDC</td>
<td>Surface Deployment and Distribution Command</td>
</tr>
<tr>
<td>SFRM</td>
<td>Set Fielding Retrograde Module</td>
</tr>
<tr>
<td>SKO</td>
<td>Sets, Kits and Outfits</td>
</tr>
<tr>
<td>SSA</td>
<td>Supply Support Activity</td>
</tr>
<tr>
<td>T</td>
<td>Technical Bulletin</td>
</tr>
<tr>
<td>TEMPER</td>
<td>Tent Extendable Modular Personnel</td>
</tr>
<tr>
<td>TEWLS</td>
<td>Theater Enterprise-Wide Logistics System</td>
</tr>
<tr>
<td>TI</td>
<td>Technical Inspection</td>
</tr>
<tr>
<td>TIC</td>
<td>Type Item Code</td>
</tr>
<tr>
<td>TM</td>
<td>Technical Manual</td>
</tr>
<tr>
<td>TMDE</td>
<td>Test Measurement & Diagnostic Equipment</td>
</tr>
<tr>
<td>TPE</td>
<td>Theater Provided Equipment</td>
</tr>
<tr>
<td>TRIMEDS</td>
<td>Tri-service Medical excess redistribution System</td>
</tr>
<tr>
<td>U</td>
<td>Unit Assemblage Listing</td>
</tr>
<tr>
<td>UIC</td>
<td>Unit Identification Code</td>
</tr>
<tr>
<td>USAMMA</td>
<td>United States Army Medical Materiel Agency</td>
</tr>
<tr>
<td>USAMRMC</td>
<td>United States Army Medical Research and Materiel Command</td>
</tr>
<tr>
<td>USARCENT</td>
<td>Army Central Command</td>
</tr>
<tr>
<td>USC</td>
<td>United States Code</td>
</tr>
<tr>
<td>USPL</td>
<td>United States Public Law</td>
</tr>
<tr>
<td>USR</td>
<td>Unit Status Report</td>
</tr>
<tr>
<td>USTRANSCOM</td>
<td>United States Transportation Command</td>
</tr>
<tr>
<td>SUBJECT</td>
<td>SB 8-75-S4</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>Army Medical Department (AMEDD) Fielding Policy, The</td>
<td>S4</td>
</tr>
<tr>
<td>Applicability</td>
<td>S4</td>
</tr>
<tr>
<td>Brigade Combat Team (BCT) and Echelon Above Brigade Combat Team (EABCT)</td>
<td>S4</td>
</tr>
<tr>
<td>Combat Support Hospitals (CSH)</td>
<td>S4</td>
</tr>
<tr>
<td>General</td>
<td>S4</td>
</tr>
<tr>
<td>Introduction</td>
<td>S4</td>
</tr>
<tr>
<td>Modernization Program</td>
<td>S4</td>
</tr>
<tr>
<td>Nonmedical ASIOE LINs (Table 1-2 of Nomenclature with LIN or NSN)</td>
<td>S4</td>
</tr>
<tr>
<td>Nonmedical Associated Support Items of Equipment (ASIOE)</td>
<td>S4</td>
</tr>
<tr>
<td>Convention for Safe Containers (CSC)</td>
<td>S4</td>
</tr>
<tr>
<td>Compliance Requirements for the International Safety Standards to Certify Containers</td>
<td>S4</td>
</tr>
<tr>
<td>Container Management and Inventory Guidance</td>
<td>S4</td>
</tr>
<tr>
<td>Introduction</td>
<td>S4</td>
</tr>
<tr>
<td>Safety Inspection Requirements</td>
<td>S4</td>
</tr>
<tr>
<td>Transmittal Request for New DOD Form DD 2282 (Sample)</td>
<td>S4</td>
</tr>
<tr>
<td>Distribution Illumination Systems Electrical (DISE) and Power Distribution</td>
<td>S4</td>
</tr>
<tr>
<td>AutoDISE</td>
<td>S4</td>
</tr>
<tr>
<td>Introduction</td>
<td>S4</td>
</tr>
<tr>
<td>Cable Assemblies</td>
<td>S4</td>
</tr>
<tr>
<td>Common Features DISE/PDISE Feeder and Distribution Center, Power Distribution Panel</td>
<td>S4</td>
</tr>
<tr>
<td>Difference Between DISE/PDISE</td>
<td>S4</td>
</tr>
<tr>
<td>DISE/PDISE Auxiliary Equipment</td>
<td>S4</td>
</tr>
<tr>
<td>DISE/PDISE Inventories</td>
<td>S4</td>
</tr>
<tr>
<td>DISE/PDISE Systems Used with Combat Support Hospitals</td>
<td>S4</td>
</tr>
<tr>
<td>Excess Medical Materiel and the Lead Materiel Integrator (LMI)</td>
<td>S4</td>
</tr>
<tr>
<td>Accountability of Excess Medical Materiel and Equipment</td>
<td>S4</td>
</tr>
<tr>
<td>Expandable Tactical Shelter Tiedown</td>
<td>S4</td>
</tr>
<tr>
<td>Proper Tiedown Procedures</td>
<td>S4</td>
</tr>
<tr>
<td>Tactical Shelter Damage that is Caused by Improper Tiedown</td>
<td>S4</td>
</tr>
<tr>
<td>SUBJECT</td>
<td>SB 8-75-</td>
</tr>
<tr>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>Expandable Tactical Shelter (ISO) Repair:</td>
<td>S4</td>
</tr>
<tr>
<td>Blind Rivet Removal and Installation</td>
<td>S4</td>
</tr>
<tr>
<td>Direct Support Maintenance Reparable Damage Examples</td>
<td>S4</td>
</tr>
<tr>
<td>Drying Water-Soaked Areas in Panels</td>
<td>S4</td>
</tr>
<tr>
<td>Expandable Tactical Shelters</td>
<td>S4</td>
</tr>
<tr>
<td>Maintenance Allocation Chart</td>
<td>S4</td>
</tr>
<tr>
<td>Repair of Depression or Small Puncture</td>
<td>S4</td>
</tr>
<tr>
<td>Repair of Puncture Through One Skin and Core</td>
<td>S4</td>
</tr>
<tr>
<td>Repair of Puncture with Core Fracture Damage</td>
<td>S4</td>
</tr>
<tr>
<td>Repair of Puncture with Minimal Damage to Core and Extended Cracks</td>
<td>S4</td>
</tr>
<tr>
<td>Repair Procedures for Small Dent(s) or Depressions</td>
<td>S4</td>
</tr>
<tr>
<td>Shelter Body Seal Replacement</td>
<td>S4</td>
</tr>
<tr>
<td>Unit Maintenance (Organizational) Reparable Damage Examples</td>
<td>S4</td>
</tr>
</tbody>
</table>

Glossary for SB 8-75-S4 --- S4 GL-1

Index for SB 8-75-S4 --- S4 IN-1
By Order of the Secretary of the Army:

Official:

GERALD B. O'KEEFE
Administrative Assistant to the
Secretary of the Army
1411303

Distribution:

This publication is available through Electronic Media Only (EMO) by accessing the Army Knowledge Online (AKO) website and is intended for the use of command levels C, D, and E for the Active Army, the Army National Guard/Army National Guard of the United States, and the US Army Reserve.
PIN: 064044-000